Evaluation of High-Resolution Precipitation Estimates from Satellites during July 2012 Beijing Flood Event Using Dense Rain Gauge Observations

نویسندگان

  • Sheng Chen
  • Huijuan Liu
  • Yalei You
  • Esther Mullens
  • Junjun Hu
  • Ye Yuan
  • Mengyu Huang
  • Li He
  • Yongming Luo
  • Xingji Zeng
  • Guoqiang Tang
  • Yang Hong
چکیده

Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of three high-resolution satellite precipitation estimates: Potential for monsoon monitoring over Pakistan

Multi-sensor precipitation datasets including two products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and estimates from Climate Prediction Center Morphing Technique (CMORPH) product were quantitatively evaluated to study the monsoon variability over Pakistan. Several statistical and graphical techniques are applied to illustrate the noncon...

متن کامل

Evaluation of PERSIANN-CCS Rainfall Measurement Using the NAME Event Rain Gauge Network

Robust validation of the space–time structure of remotely sensed precipitation estimates is critical to improving their quality and confident application in water cycle–related research. In this work, the performance of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) precipitation product is evaluated agai...

متن کامل

Simulation of rainfall temporal distribution pattern using WRF Model (case study of Parsian dam basin)

During the rainfall, the intensity of precipitation varies. Changes in the amount of precipitation during an event of rainfall are effective in the resulting of flood and its intensity. Knowledge of how rainfall changes over time during rainfall is determined by temporal distribution pattern of rainfall. For this purpose, availability of short-term time scales rainfalls data are important that ...

متن کامل

Multiple-Timescale Intercomparison of Two Radar Products and Rain Gauge Observations over the Arkansas–Red River Basin

A detailed intercomparison was performed for the period January 1998–June 1999 of three different sets of rainfall observations over the watershed covered by the National Weather Service Arkansas–Red Basin River Forecast Center (ABRFC). The rainfall datasets were 1) hourly 4-km-resolution ABRFC-produced P1 estimates, 2) 15-min 2-km resolution NOWrad estimates produced and marketed by Weather Se...

متن کامل

Multicriteria design of rain gauge networks for flash flood prediction in semiarid catchments with complex terrain

[1] Despite the availability of weather radar data at high spatial (1 km) and temporal (5–15 min) resolution, ground‐based rain gauges continue to be necessary for accurate estimation of storm rainfall input to catchments during flash flood events, especially in mountainous catchments. Given economical considerations, a long‐standing problem in catchment hydrology is to establish optimal placem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014